Interactions between proteins, DNA and RNA

The energy, length and time coordinate system to find your way in the cell

Scanning/atomic force microscope (SFM/AFM)

Movement of the SFM tip along the sample

SFM image of a 6.8 kb superhelical plasmid

E. coli RNA polymerase at the promoter of a 1036 bp DNA

RNA polymerase finds its promoter by "sliding" along the DNA as visualized by SFM

Guthold, M. et al. (1999). Direct observation of one-dimensional diffusion and transcription by escherichia coli RNA polymerase. Biophys J 77, 2284-2294.

Synthesis of RNA by E.coli RNA polymerase immobilized on the surface, Example 1

Kasas, Guthold, Bustamante, C.

Synthesis of RNA by E.coli RNA polymerase immobilized on the surface, Example 2

Kasas, Guthold, Bustamante, C.

Synthesis of RNA by E.coli RNA polymerase immobilized on the surface, Example 3

Kasas, Guthold, Bustamante, C.

Different intermediates in the transcription initiation process

(a) RNA polymerase holoenzyme binds nonspecifically to DNA.
(b) The holoenzyme conducts a one-dimensional search for a promoter.

(c) When a promoter is found, the holoenzyme and the promoter form a closed complex.

(d) A conformational change from the closed complex to an open complex produces a transcription bubble at the initiation site. A short stretch of RNA is then synthesized.

(e) The o subunit dissociates from the core enzyme, and RNA polymerase clears the promoter. Accessory proteins, including NusA, bind to the polymerase.

Reaction mechanism of transcription by yeast RNA polymerase II
http://www.cramer.genzentrum.lmu.de/assets/Lab-Cramer/Lab-Cramer-Publications/txnmovie.mov

Intermediate steps during transcription that could be rate limiting for gene expression

Scheme: Michael Thomm

Why is it important to study kinetics?
 a) Thermodynamic versus kinetic control
 b) Understanding the reaction mechanism

Reaction 1 (green) is the faster reaction since the activation energy is lower.
=> P1 is the kinetic product.

Reaction 2 (blue) generates a more stable product => P 2 is the thermodynamic product.

Kinetic analysis of two different promoters (McClure)

Calculating reaction kinetics

A very, very simple reaction

$$
\begin{array}{cl}
A \xrightarrow{k_{\text {on }}} B & \begin{array}{l}
\frac{1}{k}=\tau \quad \text { decay time of the reaction } \mathrm{s}^{-1} \text { is the reaction rate constant } \\
-\frac{d[A]}{d t}=k[A]
\end{array} \\
-\frac{d[A]}{[A]}=k d t & \text { rate equation for decrease of A over ti } \\
-\int \frac{1}{[A]} d[A]=k \int d t & \text { integrate } \\
-\ln [A]=k t+\text { constant } & \begin{array}{l}
\text { succesful integration! } \\
\text { but what about the constant? }
\end{array}
\end{array}
$$

A simple reaction, 2nd try

$$
-\int_{[A]_{0}}^{[A]_{1}} \frac{1}{[A]} d[A]=k \int_{0}^{t} d t
$$

boundary condition: at $t=0$ the initial concentration of A is $[A]_{0}$
we already know the indefinite integral and we calculate it with our boundaries

$$
-\ln [A]=k t+\text { constant }
$$

$$
-\left(\ln [A]_{t}-\ln [A]_{0}\right)=k t-k 0 \quad \text { and } \quad-\ln [A]_{t}=k t-\ln [A]_{0}
$$

$$
\ln \left(\frac{[A]_{t}}{[A]_{0}}\right)=-k t \quad \text { and } \quad[A]_{t}=[A]_{0} e^{-k t}
$$

Irreversible bimolecular reaction

$$
A+B \xrightarrow{k_{o n}} A B \quad k_{\text {on }} \text { in }^{-1} \mathrm{~s}^{-1} \text { or } \frac{\text { liter }}{\mathrm{mol} \mathrm{~s}}
$$

$$
\frac{d[A B]}{d t}=k_{\mathrm{on}} \cdot[A] \cdot[B]
$$

separating three variables is not good...

$$
\begin{aligned}
x= & \left([A]_{0}-[A]_{t}\right)=\left([B]_{0}-[B]_{t}\right) \quad \text { but we can do a trick... } \\
& \frac{1}{\left([A]_{0}-[B]_{0}\right)} \ln \left(\frac{[B]_{0}[A]_{t}}{[A]_{0}[B]_{t}}\right)=k t \quad \text { to get something useful }
\end{aligned}
$$

Reversible bimolecular reaction

$$
\begin{gathered}
\mathrm{AB} \underset{k_{\text {on }}}{\stackrel{k_{\text {off }}}{\rightleftarrows}} \mathrm{A}+\mathrm{B} \\
\frac{k_{\text {off }}}{k_{\text {on }}}=K_{\mathrm{d}} \\
\frac{1}{k_{\text {off }}}=\tau
\end{gathered}
$$

$\mathrm{k}_{\text {off }}$ in s^{-1} is the reaction rate constant for dissociation
k_{on} in $\mathrm{M}^{-1} \mathrm{~s}^{-1}$ is the reaction rate constant for binding
relation to the equilibrium dissociation constant
decay time of the complex

$$
\frac{d[\mathrm{AB}]}{d t}=\mathrm{k}_{\mathrm{on}} \cdot[\mathrm{~A}] \cdot[\mathrm{B}]-\mathrm{k}_{\mathrm{off}} \cdot[\mathrm{AB}]
$$

rate equation for complex formation, can be solved but it is already difficult

The "simple" Michaelis-Menten reaction

$$
\begin{aligned}
& \mathrm{E}+\mathrm{S} \underset{k_{-1}}{\stackrel{k_{+1}}{\rightleftarrows}} \mathrm{ES} \underset{k_{-2}}{\stackrel{k_{+2}}{\rightleftarrows}} \mathrm{E}+\mathrm{P} \\
& e_{0}-x \quad s_{0}-x-p \\
& \frac{d x}{d t}=k_{+1} \cdot\left(e_{0}-x\right) \cdot\left(s_{0}-x-p\right)-k_{-1} \cdot x-k_{+2} \cdot x+k_{-2} \cdot\left(e_{0}-x\right) \cdot p \\
& \frac{d p}{d t}=k_{+2} \cdot x-k_{-2} \cdot\left(e_{0}-x\right) \cdot p
\end{aligned}
$$

The second equation can be used to express x and $d x / d t$ in dependence of p and dp but the resulting equation has no solution in p and t
\Rightarrow simplifications like $\mathrm{s} 0 \gg \mathrm{e} 0$ or $\mathrm{dx} / \mathrm{dt}=$ constant

But can you calculate how ATP consuming chromatin remodeling complexes translocate nucleosomes?

- ATP hydrolysis in vitro: 2-5 s
- nucleosome translocation (3-5 bp) in vitro: $\sim 20 \mathrm{~s}$

Chromatin remodeling complexes are diverse and abundant

ATPase subfamilies with many members

Lodestar
Rad5/16

- Ris1

SHPRH
SMARCAL1
adapted from Owen-Hughes, NAR 2006

Diversity of chromatin remodeling complexes

Different complexes
different additional subunits

MOTOR

Motor exchange within the same ATPase subfamily

Splice variants of complex subunits

Figure by Gernot Längst

Different chromatin remodeler position nucleosomes to different sites on the same substrate (hsp70 promoter)

Nucleosome translocation as a Michaelis-Menten reaction

$$
\mathrm{E}+\mathrm{S} \underset{k_{-1}}{\stackrel{k_{+1}}{\rightleftarrows}} \mathrm{ES} \xrightarrow{\stackrel{k_{+2}\left(\text { or } k_{\mathrm{cat}}\right)}{\leftrightarrows}} \mathrm{E}+\mathrm{P}
$$

E : enzyme = remodeler
S: substrate = nucleosome at initial position
P : product = translocated nucleosome
P could sever as the substrate for a new translocation cycle

$$
\begin{aligned}
K_{\mathrm{M}}= & \frac{k_{-1}+k_{+2}}{k_{1}}=\frac{\text { dissociation rates of } \mathrm{ES}}{\text { formation rate of } \mathrm{ES}}\left(\text { in } \frac{\mathrm{mol}}{\text { liter }}\right) \\
& \text { concentration of substrate at which half the } \\
& \text { active sites of the enzyme are filled }
\end{aligned}
$$

"reaction efficiency" $=\frac{k_{\text {cat }}}{K_{\mathrm{M}}}=\frac{\text { catalysis rate }}{\text { binding site saturation }}$
high $k_{\text {cat }}=$ good catalysis rate
low $K_{\mathrm{M}}=$ good binding of substrate to enzyme

Copasi (www.copasi.org) to the rescue: Numerical simulations of binding kinetics (Question 2 and 3)

Standard conditions

Standard conditions: $k_{\text {off }}=0.1 \mathrm{~s}^{-1}$

10x reduced binding affinity at $N_{i+1}: k_{\text {off }, i+1}=1 \mathrm{~s}^{-1}$

this works perfect and is beautifully simple

Karsten's good and bad substrate model for nucleosome translocation

$$
\begin{gathered}
\mathrm{E}+\mathrm{S} \underset{k_{-1}}{\stackrel{k_{+1}}{\rightleftarrows}} \mathrm{ES} \stackrel{k_{+2}\left(\text { or } k_{\mathrm{cat}}\right)}{\stackrel{k_{\mathrm{cat}}}{\leftrightarrows}} \mathrm{E}+\mathrm{P} \\
\text { "reaction efficiency" }=\frac{\text { catalysis rate }}{K_{\mathrm{M}}}=\frac{\text { binding site saturation }}{}
\end{gathered}
$$

good nucleosome substrates:

- high remodeler binding affinity (= low K_{M})
- high translocation rate away from this position (= high $k_{\text {cat }}$)
$=>$ high $k_{\text {cat }} / K_{M}$
bad nucleosome substrates:
- low substrate binding affinity (= high K_{M})
- low translocation rate away from this position (= low $k_{\text {cat }}$)
=> low $\mathrm{k}_{\mathrm{cat}} / K_{\mathrm{M}}$

Hypothesis:

The remodeler move good substrate nucleosomes (high $k_{\text {cat }} / K_{M}$) to positions where they are bad substrates (low $k_{\text {cat }} / K_{\mathrm{M}}$)

Two mechanisms to

Finding a nucleosme substrate: 3D search versus 1D sliding along the DNA

single nucleosomes

